Natural Language or Not (NLoN) - A Package for Software Engineering Text Analysis Pipeline

نویسندگان

  • Mika V. Mantyla
  • Fabio Calefato
  • Maelick Claes
چکیده

Œe use of natural language processing (NLP) is gaining popularity in so‰ware engineering. In order to correctly perform NLP, we must pre-process the textual information to separate natural language from other information, such as log messages, that are o‰en part of the communication in so‰ware engineering. We present a simple approach for classifying whether some textual input is natural language or not. Although our NLoN package relies on only 11 language features and character tri-grams, we are able to achieve an area under the ROC curve performances between 0.9760.987 on three different data sources, with Lasso regression from Glmnet as our learner and two human raters for providing ground truth. Cross-source prediction performance is lower and has more fluctuation with top ROC performances from 0.913 to 0.980. Compared with prior work, our approach offers similar performance but is considerably more lightweight, making it easier to apply in so‰ware engineering text mining pipelines. Our source code and data are provided as an R-package for further improvements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Text mining and software engineering: an integrated source code and document analysis approach

Documents written in natural languages constitute a major part of the artifacts produced during the software engineering lifecycle. Especially during software maintenance or reverse engineering, semantic information conveyed in these documents can provide important knowledge for the software engineer. In this paper, we present a text mining system capable of populating a software ontology with ...

متن کامل

An improved joint model: POS tagging and dependency parsing

Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...

متن کامل

UIMA-Based JCoRe 2.0 Goes GitHub and Maven Central ― State-of-the-Art Software Resource Engineering and Distribution of NLP Pipelines

We introduce JCORE 2.0, the relaunch of a UIMA-based open software repository for full-scale natural language processing originating from the Jena University Language & Information Engineering (JULIE) Lab. In an attempt to put the new release of JCORE on firm software engineering ground, we uploaded it to GITHUB, a social coding platform, with an underlying source code versioning system and var...

متن کامل

A Tidy Data Model for Natural Language Processing using cleanNLP

The package cleanNLP provides a set of fast tools for converting a textual corpus into a set of normalized tables. The underlying natural language processing pipeline utilizes Stanford’s CoreNLP library, exposing a number of annotation tasks for text written in English, French, German, and Spanish. Annotators include tokenization, part of speech tagging, named entity recognition, entity linking...

متن کامل

Intelligent Software Development Environments: Integrating Natural Language Processing with the Eclipse Platform

Software engineers need to be able to create, modify, and analyze knowledge stored in software artifacts. A significant amount of these artifacts contain natural language, like version control commit messages, source code comments, or bug reports. Integrated software development environments (IDEs) are widely used, but they are only concerned with structured software artifacts – they do not off...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018